Application Fields of 316L Stainless Steel Powder

Application Fields of 316L Stainless Steel Powder

316L stainless steel powder is an important metal powder, mainly used in various fields due to its excellent corrosion resistance and processing performance. The following will provide a detailed introduction to applying 316L stainless steel powder in different fields.

1. Aerospace field

In aerospace, 316L stainless steel powder is widely used to manufacture high-strength and corrosion-resistant components. Due to the excellent high-temperature and oxidation resistance of 316L stainless steel powder, it can maintain stable performance in harsh environments such as high temperature, high pressure, and high speed, ensuring the safe and reliable operation of the aircraft. For example, in the manufacturing of jet engines, 316L stainless steel powder is used to manufacture high-temperature components such as turbine blades, combustion chambers, etc., which can withstand temperatures of up to 600 and high-pressure airflow.

In addition, 316L stainless steel powder is also widely used in manufacturing high-strength structural components in aerospace vehicles, such as beams, frames, ribs, etc. Due to its excellent processing and welding performance, it can be easily processed into various complex structural components, ensuring their dimensional accuracy and stability.

2. Petrochemical industry

In the petrochemical industry, 316L stainless steel powder is widely used to manufacture high-strength and corrosion-resistant equipment and pipelines. Due to 316L excellent corrosion resistance, it can effectively resist the erosion of various chemical substances and make sure the long-term stable operation of the equipment. For example, in petrochemical equipment manufacturing, 316L stainless steel powder is used to manufacture high-temperature and high-pressure containers and pipelines, which can withstand the corrosion of various chemicals and ensure its sealing and strength.

In addition, 316L stainless steel powder is also widely used in manufacturing catalyst carriers, filters, separators, and other components in the petrochemical production process. Due to 316L excellent corrosion resistance and high-temperature performance, it can ensure the long-term stable operation of the equipment and improve production efficiency.

3.Medical field

In the medical field, 316L stainless steel powder is widely used to manufacture high-standard implants and medical devices. Due to its non-toxic and harmless effects on the human body, as well as its good biocompatibility, it can ensure the long-term stability and safety of the product and is widely used in manufacturing human implants and medical devices. For example, in manufacturing artificial joints, prostheses, and other implants, 316L stainless steel powder is used to manufacture support structures and connectors, ensuring their strength and stability, as well as good wear and corrosion resistance.

In addition, 316L stainless steel powder is also widely used in the medical field to manufacture high-standard surgical instruments, medical devices, etc. Due to its good processing and welding performance, various complex-shaped medical devices can be manufactured, improving the reliability and safety of medical equipment.

4. Industrial sector

In the industrial field, 316L stainless steel powder is widely used to manufacture high-strength and corrosion-resistant components and equipment. For example, it can be used to manufacture high-quality mechanical parts such as springs, bearings, bolts, chemical equipment, and ship components. Due to its excellent corrosion resistance and antioxidant performance, it can ensure the long-term stable operation of the equipment and improve production efficiency.

In addition, in the industrial field, 316L stainless steel powder is also widely used in the power and electronics industries. For example, in manufacturing batteries and electronic components, 316L stainless steel powder is used to manufacture components such as shells, brackets, and terminals, which can improve quality and safety of the products.

In summary, 316L stainless steel powder has many applications in different fields.

About KMPASS

KMPASS is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, KMPASS dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for 316L powder, please send an email to: sales2@nanotrun.com

Application Fields of Nickel Based Alloys

Nickel Based Alloys: Applications

Nickel-based alloy Based on nickel, it is made up of various alloying materials. It has excellent mechanical properties, high-temperature resistance and corrosion resistance. It's used in aviation and aerospace as well as petrochemical. This article will give a detailed description of the Applications of nickel-based alloys in a variety fields including aerospace, petrochemicals and power energy. It also provides references for Research and Application.

Applications of nickel-based alloys to the aerospace industry

The aerospace sector is an important area for the application. Nickel-based alloys These are the main components used in aerospace to produce high-performance products like aircraft, rockets and satellites.

Aircraft engine components

Aircraft engines include:

* The aviation industry's core equipment.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

Mechanical properties

Nickel-based metals exhibit excellent strength at high temperatures, as well as creep and fatigue resistance. The alloys are widely used for aircraft engine parts, including turbine blades and guides.

Rocket engine components

Rocket engines are key equipment in the launch of satellites and space probes. They require materials with extreme high-temperature strengths and corrosion resistance. Nickel-based alloys In the manufacture of rocket engines are commonly used key components like combustion chambers. nozzles and turbine disks.

Satellite structural components

Satellites' structural components need materials with high temperature resistance, corrosion resistance and dimensional stabilities. Many structural components, including solar panels and structural frame frames, are manufactured using nickel-based materials.

Use of nickel-based alloys for the petrochemical Industry

Nickel-based materials are also widely used in the petrochemical and chemical industries. Nickel-based alloys are mainly used in the manufacture of key equipment, such as high temperature and high pressure reactors and pipes, for the petrochemical industries.

High-temperature reactor

High-temperature Reactors are:

The petrochemical industry's core equipment.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Alloys based on nickel have excellent mechanical, corrosion and high-temperature properties. High-temperature reactors like hydrogenation reactors or reforming reactors are made with these alloys.

High-pressure pipeline

In the petrochemical industries, high-pressure pipes are essential equipment. Materials with excellent corrosion resistance, high-pressure resistance and mechanical properties are required. Nickel-based materials are used for high-pressure pipe manufacturing because of their excellent high-pressure resistance, corrosion resistance and mechanical properties.

Applications of nickel-based materials in the field power energy

The electric energy sector is another area where nickel-based materials are used. These alloys are primarily used to manufacture high-temperature heat-exchangers and gas-turbines.

High-temperature heat exchanger

The high-temperature heat-exchangers in the power and energy industry are essential equipment. Materials with excellent resistance to corrosion, as well as mechanical properties, are required. Nickel-based materials have excellent mechanical, corrosion-resistant, and high-temperature properties. The alloys are widely used for high-temperature exchangers like air preheaters or flue gas exchangers found in coal-fired electricity stations.

Gas turbine blades

Gas turbines can be:

* Equipment for energy conversion and electricity generation.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

Mechanical properties

In the manufacture of gas turbines such as blades or key components, nickel-based materials are used widely.

Applications of nickel-based alloys to biomedicine

Biomedical applications are another important area for nickel-based metals. These alloys are used to manufacture medical devices like artificial joints and vascular scaffolds.

Artificial joint

Artificial joints can be:

* Medical devices which replace diseased joints.

* Requires materials with excellent corrosion resistance.

* Biocompatibility.

* Mechanical properties

Alloys based on nickel have excellent corrosion resistance and biocompatibility. They are also used to manufacture artificial joints.

Vascular stent

Materials with outstanding corrosion resistance and biocompatibility are required for vascular stents. Nickel-based materials are highly corrosion resistant, biocompatible, and flexible and are widely used for vascular devices.

As a summary, nickel-based materials have been extensively used in the fields of aerospace, petrochemicals power energy and biomedicine. In the future, with the continued development of technology and the use of nickel-based materials, they will become more widely used, contributing to industrial and technological development.

About KMPASS

KMPASS is a global chemical supplier & manufacturer that has over 12 year experience in supplying super-high-quality chemicals & Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions to enhance the efficiency of different industries, create value and overcome various challenges. You can contact us at sales2@nanotrun.com for Inonel 718 Powder.

What is Zinc Sulfide

Zinc Sulfide:

Its chemical formula is ZnS. The molecular weight of the compound is 134.72. It is created by interacting through ionic interactions with zinc ions, (Zn2+), and sulfur ions, (S2-). The sulfur ions form a regular tetrahedron in which the zinc ion sits in the middle. The sulfur ion occupies the center of the tetrahedron. This structure can also be described as a face centered cubic crystal system where zinc and sulfur are located in the vertex of the lattice and at the center of the face.

Zinc Sulfide (also known as Zinc Sulfide) is an insoluble, white solid. It is not soluble in water. However, it is soluble with bases and acids. Zinc sulfide's density is 3.98 g/cc, with a melting point of 1350 °C. The optimum boiling point is 1650 °C. Zinc sulfide has relatively stable properties, but under certain circumstances it can react. Zinc sulfide is oxidized, for instance, when it comes into contact with an oxidizing substance. In an environment that is alkaline, zinc sulfide will react with hydroxide molecules to produce zinc hydroxide.

Application Of Zinc Sulfide

Zinc sulfide, also known as zinc sulfur, is a significant compound. The unique crystal structure and chemical and physical characteristics of zinc sulfide have made it a widely used compound in numerous fields. We will discuss the various applications of zinc sulfide.

1. Manufacturers of phosphor

Zinc Sulfide has a variety of uses, including in fluorescent screens. Zinc sulfide, used in the manufacture of fluorescent screens, can be made into phosphors which, upon being excited by external lights, emit a variety of colors. When producing fluorescent lights, zinc-sulfide also makes phosphors which emit visible light upon being excited by ultraviolet radiation.


2. Manufacturing of photoelectric conversion materials

Zinc Sulfide, a material used for photoelectric conversion, can also be used in the manufacture of solar cells. In solar cells zinc sulfide converts light energy into electrical power. The photoelectric efficiency of zinc sulfide, combined with its low cost, makes it a material that has wide applications.


3. Drug Manufacturing

Zinc Sulfide, because of its biological activity, has many applications in pharmaceutical production. For instance, zinc is used in the manufacture of anti-malarials, like zincsulfate or zinc acetate. The zinc sulfide used can be used for the production of preservatives and fungicides.


4. It is a catalyst manufacturing

Zinc sulfur acts as a catalyst for the creation of other compounds like zinc acetates, acetones, and methylisobutylketone. Zinc sulfur is an excellent catalyst for manufacturing due to its high activity.


5. Optical device manufacturing

Due to its high transparency, zinc sulfur is used widely in optical devices. Zinc sulfide is used, for instance, in optical fiber communication to produce optical fiber preforms. Additionally, zinc sulfide may be used to make optical devices like optical Windows and lenses.

Production Method for Zinc Sulfide

1. Method of chemical precipitation

The chemical precipitation method is the most common way to prepare zinc sulfide. The zinc sulfide was obtained by mixing zinc salt with sulfur salt in solution.

Preparation Solution: Dissolve a suitable amount of zinc salt and sulfur salt into water to create a solution.

Precipitation reaction : the above solution is heated in stirring conditions and an appropriate amount precipitating agent is then added to precipitate both zinc ions (and sulfur ions) to generate zinc-sulfide precipitation.

Filtration: After the reaction solution has been filtered, a filtrate is obtained that contains zinc-sulfide precipitation.

Cleaning: The filtered precipitation of zinc sulfide is cleaned with alcohol in order to remove impurities.

Drying: After washing the zinc sulfide it is precipitated then dried to get zinc sulfide.

Chemical precipitation is easy to do, inexpensive, and produces a product of high purity. The disadvantages of this method are that it requires many detergents and precipitating agents. Also, the waste liquid generated must be further processed before being discharged, which can cause environmental pollution.


2. Synthesis of solid phases at high temperatures

Traditional methods for the preparation of zinc sulfide include high-temperature solid phase reactions. A solid reaction between zinc oxides and sulfur-containing elements was used to produce zinc sulfide.

Ingredients: To make raw materials, the appropriate amount of carbon powder, zinc oxide powder, and sulfur dioxide powder is mixed.

Pretreatment: The raw material is pretreated at high temperature to ensure that all components react and generate zinc and sulfur vapour.

Synthesis: Zinc and sulfur vapors are produced at high temperatures.

The powdered zinc sulfide is collected and treated as required.

The high-temperature, solid-phase synthesis is characterized by high purity, excellent crystallinity, as well as a relatively straightforward process. The method does require high-temperatures and a lot of carbon and sulfur powder.


3. Solventothermal Method

The solvothermal process is a method that has been developed to prepare zinc sulfide. The method is to dissolve zinc salts and sulfur salts in organic solvents under high pressure and temperature. This produces zinc sulfide by hydrothermal reaction.

Preparation Solution: Dissolve an appropriate amount of zinc salt and sulfur in organic solvent.

High temperature and pressure reaction: In a high temperature and pressure reactor, the above solution is placed and hydrothermal reaction takes place under conditions of high temperature and low-pressure to produce zinc-sulfide-based powder.


Collection: The generated powder of zinc sulfide will be collected and treated.

The solvothermal technique has the advantage of a high purity product, good crystallinity as well as a relatively straightforward process. This method allows the user to adjust the product properties by using different organic solvants and reaction conditions. The method is not without its limitations. It requires high-temperature, pressure equipment. And the recovery and disposal process of organic solvents are expensive and require certain technology.

It is important to consider the advantages and limitations of different methods of production of zinc sulfide, and to select the appropriate methods according to actual conditions and needs. During the production, it is important to take into account environmental protection and safety. Adopting appropriate environmental protection technologies and measures will help reduce the harm caused to the environment and humans.

Prospect Markets of Zinc Sulfide ()

1. phosphor market prospects

Zinc sulfur is widely used to manufacture phosphor. Phosphor can absorb light while emitting different colors. It is used widely in the display, lighting, photovoltaic, and other fields. Due to the constant development of science, phosphors' application fields are expanding. Zinc sulfide has become an important material for phosphors, and the market is growing.


2. Photoelectric conversion materials: market outlook

Zinc sulfur is also widely used for the production of photoelectric materials. Photoelectric materials convert light energy to electricity. Solar cells is the most common use. The demand for solar panels is increasing as renewable energy becomes more important. The cost of photoelectric converter materials has also been steadily decreasing, as technology continues to improve.


3. Market prospects for drug manufacturing

Zinc Sulfide has also been used in the pharmaceutical industry. The pharmaceutical industry is a massive market. As people become more health-conscious, the demand for drugs increases. Zinc Sulfide can be used for antimalarial drug production and has a biological activity.


4. Prospects for the manufacturing of catalysts

Zinc sulfur is used for some catalyst production. Catalysts are substances that accelerate chemical reaction and have a variety of applications, including in the fields of environmental protection, pharmaceuticals, and chemical industries. As technology continues to develop, so do the demands for catalytic performance and selectivity. This provides more opportunities for using zinc sulfide as a catalyst.


5. The optical device market is expected to grow at a rapid rate.

Zinc sulfur is also widely employed in the manufacture of optical devices. The optical device has multiple applications, including communication, imaging and optical storage. It can modulate and transmit the light. As technology continues to develop, performance requirements for optical products are increasing. This provides more opportunities for zinc sulfide to be used in optical device production.

Price of Zinc Sulfide powder :

Many factors influence the price of a product, such as the economic activity in the industry, the demand and supply on the market.

You can contact us for a quotation if you want to know the current price of zinc sulfide.

Zinc Sulfide Powder Supplier :

Technology Co. Ltd., () is an experienced global chemical material manufacturer and supplier with over 12 years' experience. They provide super-high-quality chemicals, such as silicon powders, nitride particles, graphite particles, zinc sulfide grains, boron grains, 3D-printing powders, etc.

Contact us if you need high-quality zinc oxide powder.

The role of molybdenum in the new energy industry

Molybdenum's role in the New Energy Industry

I. Introduction

As a result of the recent changes in the global energy market, the energy sector is growing rapidly. Solar, wind, biomass, water, geothermal and other renewable energies will be used in the energy market of tomorrow. The energy sector of tomorrow will be a major player in molybdenum because it is rare. This article will examine the characteristics, principles, and application areas for molybdenum so that you can understand the importance of this element in the current energy industry.

2. Property of molybdenum

Molybdenum has high melting, boiling and strength properties, as well as corrosion resistance. Its chemical property is relatively stable, and it's insoluble in water. The molybdenum dioxide has a high thermal stability as well as excellent electrical conductivity, which makes it an important component of the new Energy Industry.


3. Molybdenum's role in the New Energy Industry

solar industry

The solar industry is a sector that converts and uses solar energy. Molybdenum compounds and their derivatives play a major role in the Solar Industry.


(1) Photovoltaic Material: The molybdenum material is a good photovoltaic because it has high conversion efficiency. Molybdenum can be added to solar cells in small amounts to improve their photoelectric conversion and lifetime.


Molybdenum can be used in high-temperature equipment like solar collectors, solar boilers and other high-temperature devices to increase the thermal efficiency.

Wind Energy Industry


Wind energy is an industry that converts wind power into energy. Molybdenum compounds and molybdenum play important roles in wind energy.


(1) Wind turbines. Molybdenum, and its alloys, have excellent strength and corrosion resistance properties. They can be used for key components like blades and main shafts in wind turbines. These materials will increase the safety and service life of equipment.


(2) Lubricants. Molybdenum compounds and their compounds are excellent lubricants and can reduce the friction losses of wind turbines and their failure rates.


Hydropower industry

The hydropower industry is an industry that uses water energy as a source of energy. Molybdenum compounds and molybdenum play important roles in hydropower.

Molybdenum can be used for key components like blades and main shafts in hydrogenerator units. This will improve the life expectancy and safety of equipment.


Fluid accessories. Molybdenum compounds and their alloys have excellent fluidity, corrosion resistance and are suitable for making fluid accessories to improve fluid efficiency and durability in hydroelectric generator sets.


Geothermal Energy Industry

Geothermal energy is an industry that uses the geothermal heat to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in geothermal energy.

(1) Geothermal equipment: Molybdenum can be used in the manufacture of key components, such as heat-exchangers and boilers for geothermal equipment to improve thermal stability and efficiency.


Molybdenum can be used for the production of components like heat exchangers, pipes, and other geothermal equipment. This will improve thermal efficiency.

Biomass Energy Industry

The biomass energy industry uses biomass energy to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in the bioenergy industry.


Molybdenum can be used for the production of boilers and burners in biomass combustion equipment. This will improve their thermal stability and efficiency.


Molybdenum is a good catalyst and can be used in the production of biofuels to increase yield and quality.


4. Molybdenum applications in the new energy sector

Solar power generation. Molybdenum has a major role to play in solar cells, and is an important material for solar energy generation systems.

Molybdenum has a significant role to play in wind power generation.

Molybdenum has a vital role to play in the hydroelectric generation of power. It is a critical material for hydropower systems.

Molybdenum has a major role to play in the production of geothermal electricity. It is also a critical material for these systems.

Molybdenum has a vital role to play in biomass energy systems.


5. Molybdenum in the New Energy Industry

Molybdenum demand will increase with the rapid development in the new energy industry. Gleichzeitig, due to the rapid development of technology and cost reduction, the use of molybdenum within the new energy industry is set to increase. Molybdenum's application in the new energy sector will expand further, contributing to the growth of green power.

How is Niobium Carbide NbC powder produced?

Overview of Niobium Carbide NBC Powder

Niobium carbide (NBC and Nb2C) is a very hard refractory ceramic material used commercially for cutting tool tips. It is usually processed by sintering and is a commonly used additive in cemented carbide as a grain growth inhibitor. The appearance is brown-gray metal powder with purple luster and strong corrosion resistance.

How is Niobium Carbide NbC powder produced?

Niobium pentoxide reduction method:

Niobium carbide can be obtained by heating niobium oxide in a vacuum at 1800°C and adding coke.

In industry, niobium carbide is usually prepared from niobium pentoxide and carbon black as raw materials: niobium pentoxide and carbon black are firstly mixed with carbide raw materials in proportion, and put into a graphite crucible. Heating hydrogen or vacuum to 1600~1800℃, carbonization for the first time, then adding carbon black, mixing it, heating to 1800~1900℃ under hydrogen or vacuum, secondary carbonization, this is niobium carbide.

{xunruicms_img_title}

Application of Niobium Carbide NBC Powder

Niobium carbide NBC powder can partially replace tantalum carbide and is widely used in refractory high temperature materials and cemented carbide additives

As a cemented carbide additive, niobium carbide is a solid solution component of ternary and quaternary carbides, such as WC-NBC-C ternary system.

Niobium carbide NBC powder can also be used to make purple artificial gemstones.

Niobium carbide NBC powder price

The price of niobium carbide NBC powder will vary randomly with the production cost, transportation cost, international situation, exchange rate and market supply and demand of niobium carbide NBC powder. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Niobium Carbide NBC Powder, please feel free to send an inquiry for the latest price of Niobium Carbide NBC Powder.

Niobium Carbide NBC Powder Suppliers

As a global supplier of niobium carbide NBC powders, Tanki New Materials Co., Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced technology and engineered materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics and structural devices, and can provide OEM services.

More information about Niobium Carbide
Niobium Carbide Properties (Theoretical)
Compound FormulaNbC
Molecular Weight104.92
AppearanceGray Black Powder
Melting Point3490℃
Boiling PointN/A
Density7.82 g/cm3
Solubility in H2OInsoluble
Exact Mass105.914223
Niobium Carbide Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A


Description of zinc stearate

Overview of Zinc Stearate

Zinc stearate is an organic substance with the chemical formula C36H70O4Zn, which is a white powder and insoluble in water. Mainly used as lubricant and mold release agent for styrene resin, phenolic resin and amine resin. At the same time, it also has the functions of vulcanization active agent and softener in rubber.

Zinc stearate production method

There are two production methods for zinc stearate: water method and melt method. Generally speaking, zinc stearate produced by water method is acidic, and molten method is alkaline.

The water method is also called the wet method. Under the condition of water as the medium, a catalyst is added, a certain temperature and pressure are controlled, and then a metal hydroxide is added, and the metal ions are replaced on the catalyst through the catalyst, and then replaced by the stearin through the catalyst itself. acid, so as to achieve the purpose of generating metal salts. The catalyst undergoes subsequent treatment and is recycled. The stearate is centrifuged, dried and ground to obtain a product with a mesh number of 200-600 that meets the industry standard. In water production, stearic acid is usually slightly excessive, so the finished product is acidic after the reaction.

The melting method, also known as the dry method, refers to the direct addition of metal oxides (zinc oxide) to the molten stearic acid. The temperature, pressure and stirring speed can be obtained through the reaction to obtain stearate. Due to the presence of catalyst, the product produced by the dry method can generally be completely reacted, and the metal oxide is slightly excessive, so the product is alkaline when detected.

{xunruicms_img_title}

Application of Zinc Stearate Emulsion

Zinc stearate emulsion can be used as heat stabilizer; lubricant; grease; promoter; thickener. For example, it is generally used as a heat stabilizer for PVC resins. For general industrial transparent products; can be used with calcium soaps. Can be used for non-toxic products.

Zinc stearate is commonly used as a mold release agent, heat stabilizer and lubricant in the plastics, polyolefins, polystyrene and rubber industries. Zinc stearate is also used as a polishing additive in wood coatings (lacquers). In cosmetics, zinc stearate is a lubricant and thickener that improves texture. Zinc stearate emulsion is widely used, including rubber, plastic, paint, ink, paint, thermal paper, cosmetics and other industries.

1. Rubber industry application: mold release agent, mold release agent, active agent, etc.

2. Application in plastic industry: internal mold release agent

3. Application in coating industry: color retention agent, filler, etc.

4 Application in plastic industry and coating industry: grinding aid

5. Application in cosmetic industry: lubricant

Zinc stearate price

The price of zinc stearate will change randomly with the production cost, transportation cost, international situation, exchange rate and supply and demand of zinc stearate emulsion. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Zinc Stearate Emulsion, please feel free to send an inquiry for the latest price of Zinc Stearate Emulsion.

Stearic Acid Liquid Supplier

As a global supplier of aqueous zinc stearate emulsions, Tanki New Materials has extensive experience in the performance, application and cost-effective manufacturing of advanced engineering materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics and structural devices, and provides OEM services.

Zinc Stearate Emulsion Properties

Other NamesN/A
CAS No.557-05-1
Compound FormulaC36H70O4Zn
Molecular WeightN/A
AppearanceWhite Emulsion
Melting Point125±5℃
Boiling PointN/A
Density0.9-1.2 g/cm3
Solubility in H2ON/A
Exact MassN/A

Zinc Stearate Emulsion Health & Safety Information

Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport Information

N/A



Preparation method of tungsten oxide

The European Union recently approved sweeping new sanctions against Russia, including bans on imports of coal, timber, chemicals, and other tungsten oxide, tungsten oxide overview, tungsten oxide application, tungsten oxide supplier, tungsten oxide price. 

Tungsten oxide overview

Tungsten trioxide is a powder metallurgy raw material for the production of cemented carbide and tungsten products. According to the national standard (GB/T 3457-1998), it is divided into two types, namely tungsten trioxide (referred to as yellow tungsten), molecular formula is WO3, and blue tungsten oxide (referred to as blue tungsten, is a mixed tungsten oxide), molecular formula W20O58. Yellow tungsten is light yellow crystalline powder, blue tungsten is dark blue or blue-black crystalline powder.

Preparation method of tungsten oxide

1. Ammonium tungstate method: The tungsten concentrate is hydrolyzed by sodium hydroxide, neutralized with hydrochloric acid, and then reacted with ammonium chloride to generate ammonium tungstate, which is then added with hydrochloric acid for acid hydrolysis to generate tungstic acid, which is then decomposed by roasting. , pulverized to obtain tungsten trioxide.

2. Hydrochloric acid decomposition method of tungstate. The saturated aqueous solution of sodium tungstate Na2WO4, calcium tungstate CaWO4 and other tungstate salts is heated, and the solution is slowly added dropwise into 2-3 times excess boiling concentrated hydrochloric acid by molar ratio. According to the above reaction, yellow tungstic acid is precipitated. At this time, if the dripping speed is too fast or the liquid temperature drops, suspension or colloidal precipitation is likely to be formed, which brings difficulties to the next treatment. After the dropwise addition, heating was continued on a water bath for 1 h, and the precipitate became easy to filter. After standing, it was washed several times with 5% ammonium nitrate aqueous solution to completely remove Cl-. After filtration, it is dried at 120 °C, and finally heated to 600 °C, the tungstic acid is completely dehydrated and becomes tungsten trioxide.

3. Thermal decomposition of ammonium paratungstate. Put ammonium paratungstate (NH4) 10W12O41·11H2O purified by recrystallization method into a porcelain crucible, and when heated to above about 400 ℃, ammonia volatilizes to obtain tungsten trioxide.

{xunruicms_img_title}

Application of tungsten oxide WO3 powder

Tungsten oxide has a variety of uses in daily life. It is commonly used in the manufacture of phosphors for industrial X-ray screens and tungstates for fire-resistant fabrics. Due to its rich yellow element, tungsten oxide is also used as a pigment in ceramics and paints. In addition, other application examples of tungsten trioxide are as follows:

Tungsten oxide is mainly used in the production of tungsten powder and tungsten carbide powder by calcination reduction, and is further used in the production of cemented carbide products, such as the manufacture of tools and molds.

Tungsten oxide can also be used to manufacture pure tungsten products, tungsten rods, tungsten wires, tungsten electrodes; and use counterweights and radiation shielding materials.

In industrial production, a small amount is also used as a colorant for yellow ceramics. In the shipbuilding industry, tungsten oxide is used as an important anti-corrosion paint and coating material.

Tungsten oxide has been used to produce electrochromic windows, smart windows. These windows are electrically switchable glass that varies in light transmittance and applied voltage. This allows users to tint their windows by changing the heat or light.

Tungsten oxide WO3 powder price

The price of tungsten trioxide powder will change randomly with the production cost of tungsten trioxide powder, transportation cost, international situation, exchange rate, market supply and demand and other factors. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, inexpensive nanomaterials and chemicals by providing turnkey custom manufacturing services. If you are looking for tungsten oxide WO3 powder, please feel free to send an inquiry to get the latest price of tungsten oxide WO3 powder.

Tungsten Oxide WO3 Powder Supplier

As a global tungsten oxide WO3 powder supplier, Tanki New Materials Co., Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics, structural devices, and can provide OEM services.

More information about Tungsten Oxide WO3 Powder

Tungsten Trioxide Properties (Theoretical)

Compound Formula

WO3

Molecular Weight

231.85

Appearance

Yellow Powder

Melting Point

1473 °C (2683 °F)

Boiling Point

1700 °C ( 3092 °F)

Density

7.16 g/cm3

Solubility in H2O

Insoluble

Crystal Phase / Structure

Monoclinic

Exact Mass

231.936 g/mol

Monoisotopic Mass

231.935644 Da

Charge

-6


Due to the limited total amount of traditional energy, people have a huge demand for cleaner and greener new energy alternatives. Now, the emergence of graphene is unlocking the possibility of its application in the energy field, which can create a greener, more efficient, and sustainable future. Here Francesco Bonaccorso, Deputy Director of Innovation at the Graphene Flagship Program, explains how his researchers have developed a series of initiatives to bring graphene from the lab to the commercial market. Graphene has become a research hotspot for new materials in the 21st century. Graphene has been adopted by many industries, the most notable of which are healthcare and key material applications.

The development of graphene has brought huge fluctuations in the demand for tungsten oxide, tungsten oxide overview, tungsten oxide application, tungsten oxide supplier, tungsten oxide price, and the demand for tungsten oxide, tungsten oxide overview, tungsten oxide application, tungsten oxide supplier, tungsten oxide price will continue to grow in the future. You can contact us for the latest news on tungsten oxide, tungsten oxide overview, tungsten oxide application, tungsten oxide supplier, tungsten oxide price.

What is the scope of application of boron nitride?

After Russia pledged to scale back its military operations around Kyiv and in northern Ukraine, the prices of most industrial metals fell, led by aluminum, showing people's concerns for supply shortage eased.

At an earlier time, the West imposed sweeping sanctions on Russia for its invasion of Ukraine, which aroused concerns about the supply problem because Russia is a major producer of nickel, aluminum, and copper. 

Russia is also a major gas supplier to Europe, where potential supply disruptions are seen as hitting power-intensive aluminum and zinc Boron nitride,Overview of boron nitride,Application of boron nitride,The price of boron nitride,Suppliers of Boron Nitride are still very uncertain.

Overview of boron nitride

Boron nitride industrial powder is a pure white ceramic material with a hexagonal crystal structure similar to graphite.Boron nitride can withstand temperatures exceeding 2,000°C,and depending on the grade,its dielectric strength is close to 1000 volts/mil.Boron nitride is hot-pressed in the form of billets,which can be easily processed into rods, bars,plates and even customized shapes.

{xunruicms_img_title}

Application of boron nitride

1.Release agent for metal forming and lubricant for metal drawing.

2.Special electrolysis and resistance materials in high temperature state.

3.High-temperature solid lubricants,extrusion anti-wear additives,additives for the production of ceramic composite materials,refractory materials and antioxidant additives,especially in the case of corrosion resistance of molten metals,heat-enhanced additives,high-temperature insulation materials.

4.Heat-sealing desiccant for transistors and additives for polymers such as plastic resins.

5.Pressed into various shapes of boron nitride products,which can be used as high temperature,high pressure,insulation and heat dissipation parts.

6.Thermal shielding materials in aerospace.

7.With the participation of catalysts,it can be converted into cubic boron nitride that is as hard as diamond after high temperature and high pressure treatment.

8.The structural materials of the atomic reactor.

9.Aircraft,rocket engine nozzle.

10.Insulator for high-voltage and high-frequency electricity and plasma arc.

11.Packaging materials to prevent neutron radiation.

12.The superhard material made by boron nitride processing can be made into high-speed cutting tools and drill bits for geological exploration and oil drilling.

13.Separation ring for continuous cast steel in metallurgy,flow slot for amorphous iron, release agent for continuous cast aluminum(various optical glass release agents)

14.Make all kinds of evaporation boats for capacitor film aluminum plating,picture tube aluminum plating,display aluminum plating, etc.

15.Various fresh-keeping aluminum-plated packaging bags,etc.

16.All kinds of laser anti-counterfeiting aluminum plating,brand hot stamping materials,all kinds of cigarette labels,beer labels,packaging boxes,cigarette packaging boxes,etc.

17.The filler used in cosmetics for lipstick is non-toxic,lubricating and shiny.

In terms of optical applications,due to the high hardness of the c-BN film and the high transmittance of the entire wavelength range from ultraviolet(from about 200 nm)to far infrared,it is suitable as a surface coating for some optical components, and is particularly suitable as Coating of window materials such as zinc selenide(ZnSe)and zinc sulfide(ZnS).In addition,it has good thermal shock resistance and hardness,and is expected to become an ideal window material for high-power lasers and detectors.

The price of boron nitride

The price of boron nitride will vary randomly with the production cost, transportation cost, international situation, exchange rate and supply and demand of boron nitride market. Tanki New Materials Co., Ltd. aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full set of customized services. If you are looking for boron nitride, please feel free to send an inquiry to get the latest price of boron nitride.

Suppliers of Boron Nitride

As a global boron nitride supplier,Tanki New Materials Co.,Ltd has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials.The company has successfully developed a series of powder materials(titanium nitride,nitride Silicon,titanium nitride,etc.)high-purity targets,functional ceramics and structural devices, and provide OEM services.

Boron Nitride Properties
Other NamesBoron nitride
CAS No.10043-11-5
Compound FormulaBN
Molecular Weight24.82
AppearanceColorless crystals
Melting Point2973 °C
Boiling PointN/A
Density2.1 g/cm3
Solubility in H2Oinsoluble
Electrical Resistivity13 to 15 10x Ω-m
Poisson's Ratio0.1
Specific Heat840 to 1610 J/kg-K
Thermal Conductivity29 to 96 W/m-K
Thermal Expansion0.54 to 18 µm/m-K
Young's Modulus14-60 GPa
Exact Mass25.0124
Monoisotopic Mass25.0124
Boron Nitride Health & Safety Information
Signal WordWarning
Hazard StatementsH319-H335
Hazard CodesXi
Risk Codes36/37
Safety Statements26-36
RTECS NumberED7800000
Transport InformationN/A
WGK Germany3


Maximo Pacheco, chairman of Codelco, Chile's state copper company, said in a recent interview that he expects copper prices to remain 'very strong in the future,' despite the recent drop. Codelco is the world's largest copper producer.

Copper prices suffered their biggest weekly drop in a year this week on concerns that tightening policy by central banks will dampen global growth and reduce demand for industrial metals. With its wide range of industrial and construction uses, copper prices are often seen as a bellwether of economic activity.

London copper closed at $8,325 a tonne on Friday after touching $8,122.50 a tonne, down 25 per cent from its Peak in March and its lowest level since February 2021. In addition to copper, other industrial metals also fell sharply. Tin, for example, fell nearly 15% at one point on Friday, bringing its losses for the week to about 25%.

"We may be in a temporary short-term turbulence, but what is important is the fundamentals and the balance of supply and demand [currently] looks very favourable for those of us with copper reserves," Mr. Pacheco said. Chile is the world's largest copper producer.  

Mr. Pacheco adds that in a world where copper is the best conductor and there are not many new reserves, copper prices look very strong because the future is very favourable for electrification.

Luoyang Tongrun Nano Technology is a trusted chemical supplier and manufacturer providing high-quality chemicals and Nanomaterials. If you are looking for the Boron nitride,Overview of boron nitride,Application of boron nitride,The price of boron nitride,Suppliers of Boron Nitride, please feel free to contact us and send an inquiry.

What is a polycarboxylate superplasticizer

In 2023, the China Greater Bay Area Concrete Industry High-Quality Development Seminar and the Expo on Concrete Equipment and Technology will take place at the Guangzhou Canton Fair Complex. Guangzhou Canton Fair Complex. The conference's theme will be "Gathering Talents and Gathering Power, Talking about Smart Concrete," co-sponsored by the Guangzhou Concrete Industry Association and Guangdong Hongwei International Exhibition, responsible persons from the Guangzhou Municipal Bureau of Housing and Urban-rural Development, Municipal Bulk Cement and Building Energy Conservation Management Center as well as Concrete Industry Experts as well as representatives from downstream and upstream companies participated at the show.


A concrete core sample 200 millimeters in diameter and an overall long 25.3 meters was successfully removed from the RCC gravity dam in the Fengshan Reservoir Project in Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province, China. The length of the core sample is the longest among water conservancy projects within Guizhou Province, marking that the quality of construction and technology of the dam in the Fengshan Reservoir Project has reached the top standard.

The concrete pouring for the first warehouse at the Qishi Junction of the Pinglu Canal in China has started, which signifies that the three main points of operation for the Pinglu Canal have entered a new phase of building the main structure. This Pinglu Canal is the backbone of the land-sea channel that runs through the west. When it is finished and open to navigators, the canal will let the world's narrowest, most cost-effective, and most efficient ocean channel between Guangxi and Southwest China.


1. What is a polycarboxylate superplasticizer?

Polycarboxylate superplasticizer is used primarily in cement concrete to act as a dispersant. It is composed of polymers containing sulfonic acid group (-SO3H) and carboxyl groups (-COOH) or derivatives of them and features high efficacy, environmental protection, and security.

The role of a polycarboxylate superplasticizer is primarily to disperse cement particles more evenly by adhering to concrete particles' surfaces, decreasing the amount of water needed, and increasing the strength and flexibility of concrete in the process. Compared to traditional water-based water-reducing agents, polycarboxylate agents have a higher water reduction rate and workability that can significantly enhance the performance and strength of concrete.


2. Superplasticizers that are applied to polycarboxylate.

Polycarboxylate Superplasticizer is commonly employed in cement concrete as a dispersant. Apart from its use in bridges, highways, tunnels, dams, high-rise buildings, and various other engineering areas, it is extensively utilized for grouting, pouring material such as anchoring, plugging the waterproof mortar K11 cement self-leveling, prefabricated components, special mortars, and various other construction materials. The applications of polycarboxylate superplasticizers in these areas will be described below.


1. Highway Engineering

In highway engineering, superplasticizers made of polycarboxylate are used to make high-performance highway concrete, which can increase durability and wear endurance on the surface of roads. The superplasticizer polycarboxylate's water-reducing capacity can significantly reduce water consumption in concrete, increase concrete's strength and flexibility, and make the road surface more dense, smoother, other, smoother, and more robust. The use of polycarboxylate superplasticizers in highway engineering will fulfill the highway construction's safety, green, and durability demands.



2. Bridge Engineering

When it comes to bridge design, superplasticizers made of polycarboxylate can be used to create bridge concrete with great strength and fluidity to increase bridges' bearing capacity and service life. The high water-reducing capacity and high workability of the polycarboxylate superplasticizers can significantly enhance Bridge concrete's performance, increase the uniformity and compactness of concrete, lessen the formation of bridge cracks, and consequently increase the longevity and safety of bridges.


3. Dam Project

When it comes to dam design, superplasticizers made of polycarboxylate are used to make high-strength, high-impermeability dam cement to increase the stability and security of the dam. Dams are an essential structure that stores water resources and manages water flow. It also has demanding requirements for the stability and safety that the dam. Utilizing polycarboxylate superplasticizers will increase the resistance and impermeability of concrete dams and effectively stop cracks and leakage, improving the dam's stability and security.

4. Tunnel Engineering

Tunnel engineering is a field where superplasticizers of polycarboxylate are used to make high-strength and high-impermeability tunnel concrete to increase the durability and stability of the tunnel. Tunnels are crucial underground structures used for transport and transport, so the requirements for durability and stability of tunnels are demanding. Using superplasticizers made from polycarboxylate will increase the durability and strength of tunnel concrete. It can effectively stop cracks and leaks, improving the tunnel's durability and stability.


5. High-rise buildings

In high-rise structures, Polycarboxylate superplasticizers are employed to make high-strength, highly-fluidity concrete for high-rise buildings to improve the safety and stability of structures. Because of the number of floors and the high building heights, their requirements for the strength of the structure and seismic performance of buildings are extremely significant. Utilizing polycarboxylate superplasticizers will enhance the strength and flexibility of high-rise concrete. It can significantly improve the strength of structures and the earthquake performance of structures, increasing the stability and security of structures.


6. Material pouring, grouting anchoring, plugging, and many more fields.

Apart from its use in engineering fields like dams, bridges, road tunnels, and high-rise structures, polycarboxylate superplasticizers are extensively used in construction materials, such as grouting agents and pouring materials, as well as anchoring and plugging. In these areas, the function of superplasticizers made from polycarboxylate is mostly by adsorption on the surfaces of cement particles, ensuring that the cement particles become more evenly distributed, thus reducing the quantity of water needed while at the same time improving the quality and consistency in the materials. These applications can fulfill various specific maintenance and construction requirements.


How do you make polycarboxylate superplasticizers?

Polycarboxylate superplasticizer is extensively utilized in cement concrete to act as a dispersant. The process of making it can be broken down into the steps below:


synthetic macromonomer

It is first necessary to create macromonomers. This is one of the primary processes in producing superplasticizers from polycarboxylate. The macromonomer is the primary component of the superplasticizer polycarboxylate that has polymer chains and polar company and can be adsorbed on the surfaces of cement particles to be superplasticizers. The most popular method used is free radicals' polymerization; the primary raw materials include unsaturated acids, such as methacrylic acid, acrylic acid, and maleic acid, and polymers like polypropylene glycol and polyethylene glycol. In the process of synthesis, it is crucial to regulate the temperature of the reaction and time, as well as the proportion of ingredients and other variables, to ensure the yield and quality of the macromonomer.


Polymerization

Once the macromonomer has been synthesized, a polymerization reaction is necessary. The polymerization reaction will react to the macromonomer using an oxidizing agent, such as ammonium persulfate, to create one with a higher level of polymerization. When performing this procedure, it is important to be aware of variables like reaction temperature and the time and quantity of oxidant used to ensure the polymerization process's efficiency as well as the quality of the product.


Post-processing

After the polymerization reaction is complete, post-treatment is needed. The post-treatment process involves dissolving the water and polymer to the ratio specified, adding acidic compounds for neutralization, adjusting the pH that the solution has, and then the addition of a protective colloid as well as other components to produce the final superplasticizer made of polycarboxylate. It is essential to regulate the amount of solution, the pH value, the kind and amount of protective colloid, and other variables to guarantee the quality and effectiveness of the solution.


4. Market prospects analysis of superplasticizer polycarboxylate

Due to the rapid growth in the field of construction, demand for polycarboxylate superplasticizers is growing, and the opportunities are vast. This article will examine the potential market for superplasticizers made from polycarboxylate based on the demand for market products, the policy environment, technological advancement, competition patterns, and the latest trends.

 

1. Market demand

As urbanization is accelerating and the continued development in infrastructure development, the demand for cement concrete has been growing each year, driving the demand for superplasticizers made of polycarboxylate. Polycarboxylate superplasticizer offers the benefits of an excellent water-reducing capacity, a high working capacity, a lower shrinkage rate, and so on. It can also significantly enhance the performance and durability of concrete. This is why it is extensively used in engineering areas such as bridges, roads, dams, tunnels, and high-rise structures. A lot of people use it. As the years progress, due to the constant advancement in infrastructure construction and the constant improvement in the quality of buildings, the need for polycarboxylate superplasticizers will continue to increase.


2. Policy environment

After the pandemic struck the world, various policies for improving the construction industry have been introduced, and across the globe are now recognizing the importance of infrastructure to spur economic development. One of them is the Chinese "Outline for the Modernization of the Construction Industry," which recommended that by 2030, the size of the construction industry would reach the target of around 20% of the nation's GDP. In the meantime, China's standards for environmental protection and conservation of energy are getting strict, and this provides an incentive for policymakers to develop superplasticizers that are made of polycarboxylate. Similar policies have been enacted across China to encourage and facilitate the manufacturing and utilization of polycarboxylate superplasticizers. Also boosting demand for superplasticizers made of polycarboxylate.


3. Development of technology

With the constant advancement of new technology and science, polycarboxylate superplasticizers' manufacturing technology and performance are constantly upgraded. Today, superplasticizers made by polycarboxylate manufacturers from around the globe are continuously pursuing technological research, development, and development and have introduced an array of brand new superplasticizers made of polycarboxylate including high water-reducing models and high slump retention varieties and those with low shrinkage. Wait. Introducing these products will further expand the scope of polycarboxylate superplasticizers' applications and market spaces.


4. Competitive landscape

The polycarboxylate superplasticizer market has developed into a remarkably competitive pattern of fierce competition. Certain well-known and well-known foreign construction materials firms are using the market for polycarboxylate superplasticizers and launching various items and products. However, smaller companies are also gaining entry into the market, and competition is growing increasingly fierce. In today's competitive market, businesses must continue to increase their service and product quality levels and cut production costs to gain market share.


5. Trends

Shortly, due to the constant growth within the industry of building the market for superplasticizers made from polycarboxylate will be able to present these trends.

High performance In developing engineering requirements, the performance of polycarboxylate superplasticizers has to be continually improved to meet the needs of high-performance concrete.

Protection of the environment: As environmental protection requirements and energy efficiency are becoming increasingly demanding, polycarboxylate superplasticizers must be more eco-friendly and energy-efficient.

Customization Diverse concrete fields and industries require different kinds of superplasticizers made of polycarboxylate to ensure that consumers will accept personalized polycarboxylate products.

Intelligent: With the advancement of technologies for information and intelligence, the next polycarboxylate superplasticizer will be more sophisticated and capable of achieving automatic production and intelligent use.

In the end, the potential for market share growth for superplasticizers made of polycarboxylate is huge. However, it is necessary for businesses to constantly improve the quality of their services and products to satisfy the changing demands of the market and to adapt to changes. In the meantime, continuous technological research, as well as innovation and advancement, are vital to meet the market's needs and predict future growth trends.

Why does properly poured concrete end up cracking

It is very easy to cause concrete cracking if the construction or maintenance are not done correctly. What are then the five main causes of cracking concrete?

1. The cement problem: For easier construction, some workers add water privately to improve the fluidity of concrete. However, this will result in an increase in water-cement, resulting in a hardening of concrete strength that is insufficient, and the cracking phenomenon.

2. Transport and mixing issues: If mixing and transporting concrete takes too much time, the water in the concrete will evaporate quickly. concrete . This leads to a concrete that is weaker on the construction site, unable to meet construction specifications.

3. Construction speed

4. Maintenance is unreasonable. During the period of maintenance, if late watering isn't maintained, the result will be the Cracking phenomenon Later in the year, concrete will be used. Concrete is used in the future. Concrete Surface Watering You can water the concrete often to speed up the drying process. Concrete will shrink if it is not watered. Late cracking occurs when concrete strength is decreased.

5. Environmental factors: If the environment at the construction site is relatively dry and there is high temperature, wind, or both, then the evaporation of the surface concrete is accelerated. This results in cracking on the surface. Concrete constructions are most likely to crack in the winter or summer because of the temperature difference.

Solution: Add an agent to prevent cracking. A variety of inorganic composite materials can prevent over 80% of the foam cement from cracking. Add 2-3 kilograms of anti-cracking material per cubic meter.

What is Molybdenum disulfide MoS2 powder

Description of Molybdenum disulfide:

Molybdenum disulfide, a compound with the formula MoS2, is a common transition metal sulfide. It is a dark grey or black solid with a layered crystal structure made up of alternating arrangements of sulfur and molybdenum atoms. Molybdenum disulfide is a good material for chemical and thermal stability. It is easily reacted with bases or acids. It is widely used as an important ingredient in lubricants, additives and composite materials. As an excellent lubricant, molybdenum disulfide has a high load-bearing capacity, good friction resistance and low friction coefficient. This makes it widely used in machinery manufacturing, petrochemical and automobile manufacturing. In extreme environments, such as high temperatures, high loads and high speeds, molybdenum disulfide can play a good lubricating role, reduce friction and wear, and thus extend the service life of the equipment. In addition, molybdenum disulfide can also be used as an additive in fuel, which can improve the combustion efficiency of fuel and reduce pollutant emissions. This additive is significant in environmental protection, helping reduce air pollution and improve energy efficiency.

Application of Molybdenum disulfide:

Molybdenum disulfide is an important compound with excellent chemical and physical properties. It is extensively used in many areas. It has good chemical and physical properties. The following are the main application areas of molybdenum disulfide:

Lubricants: Molybdenum disulfide is an excellent lubricant with high load-carrying capacity, good friction resistance and low friction coefficient. It can play a good lubrication role in extreme environments such as high temperature, high load and high speed, so it is widely used in machinery manufacturing, automobile manufacturing and petrochemical industry. Molybdenum disulfide lubricant can also make lubricating oil, grease and lubricating film.

Additive: Molybdenum disulfide can be used as an additive in fuel, which can improve the combustion efficiency of fuel and reduce pollutant emissions. This additive is significant in environmental protection, helping reduce air pollution and improve energy efficiency. In addition, molybdenum disulfide can also be used as an additive to materials such as rubber, plastics and coatings to improve the properties of materials.

Composite materials: Molybdenum disulfide can be combined with resins, rubber and other materials to prepare high-performance composite materials, such as reinforced plastics, composite fibres and so on. These composites have excellent mechanical properties and corrosion resistance and are widely used in automotive, aerospace and electronics.

Electronic industry: Molybdenum disulfide can be used as a thin film material for electronic vapour deposition to prepare MoS2 thin films with excellent electrical conductivity and light transmission. This thin film material has potential applications in optoelectronics, such as solar cells and displays. In addition, molybdenum disulfide can be used to make transistors, field-effect transistors and other electronic components with good semiconductor performance and electronic mobility.

Production Method of Molybdenum disulfide:

Molybdenum disulfide is an important compound with good physical and chemical properties widely used in many fields. There are many production methods, including synthesis, double decomposition, flotation, electroplating, etc. Among them, synthesis is a commonly used method to produce molybdenum disulfide.

The synthesis method is a method to produce nano MoS2 by reacting a tungsten or molybdenum source with a sulfur source. This method can produce sulfides with high purity, fewer impurities and fine particle size. It can prepare sulfides that meet different functional requirements, so the production of nano-sulfides by synthesis has been paid much attention. The specific steps of the synthesis process include raw material preparation, chemical reaction, product separation and purification.

In the raw material preparation stage, preparing a tungsten or molybdenum source and a sulfur source is necessary. Tungsten or molybdenum sources are usually oxides or metal powders, while sulfur sources can be elemental sulfur or sulfide. When selecting tungsten or molybdenum and sulfur sources, factors such as the purity, chemical properties and reaction conditions of raw materials must be considered.

In the chemical reaction stage, tungsten or molybdenum sources and sulfur sources are biochemical reactions under high temperatures to produce molybdenum disulfide. The specific reaction conditions include reaction temperature, reaction time and reaction atmosphere. The reaction temperature and time have important effects on the particle size and purity of the product, and the reaction atmosphere also affects the structure and properties of the product.

In the product separation and purification stage, molybdenum disulfide must be extracted from the reaction products using appropriate separation and purification methods. The commonly used separation and purification methods include precipitation, filtration, extraction, distillation, etc. These methods can separate molybdenum disulfide from other impurities to obtain high-purity molybdenum disulfide products.

In addition to the synthesis method, there are other methods of producing molybdenum disulfide, such as the double decomposition method, flotation method and electroplating method.

The compound decomposition method produces molybdenum disulfide by the reaction of ammonium tungate or ammonium molybdate with ammonium sulfide. The method can produce molybdenum disulfide at a lower temperature, and molybdenum disulfide products with different morphologies and particle sizes can be prepared.

Flotation is a method of extracting molybdenum disulfide from the mixture by grinding tungsten or molybdenum sources with minerals such as pyrite or sphalerite and using organic agents. This method can produce high-purity molybdenum disulfide products, but the production process is more complicated and requires more organic agents.

Electroplating is a method of producing molybdenum disulfide film by electroplating molybdenum disulfide on a metal substrate. Molybdenum disulfide films with excellent properties can be prepared by this method, but the chemical reagents and waste liquid in the electroplating process will cause pollution to the environment.

Different production methods have different advantages and disadvantages, and it is necessary to choose the appropriate production method according to the actual demand. At the same time, paying attention to environmental protection and safety in the production process is necessary.

Prospect Market of Molybdenum disulfide:

Molybdenum disulfide is a significant chemical compound with excellent chemical and physical properties and extensively employed in machinery, industry electronics, aerospace, and many other fields. With the continuous development of the global economy and the rapid development of high-tech fields, the demand for molybdenum disulfide is increasing. Therefore, the molybdenum disulfide market has broad prospects and potential for future development.

First of all, molybdenum disulfide as a high-performance lubricant is widely used in machinery manufacturing, automobile manufacturing, petrochemical and other fields. With the continuous development of industrialization and the large-scale precision and automation of mechanical equipment, the requirements for lubricants are getting higher and higher; molybdenum disulfide is an excellent lubricant material, and its market demand will continue to grow.

Secondly, in the field of additives, molybdenum dioxide can be utilized as an additive to fuels that enhance the efficiency of combustion in fuel, reduce pollutant emissions, help reduce air pollution and improve energy efficiency. With the continuous enhancement of environmental awareness and the strengthening of environmental protection policies, the application of molybdenum disulfide as an environmentally friendly additive will be further promoted.

In addition, in composite materials, molybdenum disulfide can be combined with resins, rubber and other materials to prepare high-performance composite materials, such as reinforced plastics, composite fibres and so on. These composite materials have excellent mechanical properties and corrosion resistance and are widely used in automotive, aerospace, electronics and other fields. With the rapid development and technological progress in the high-tech field, the demand for high-performance composite materials will continue to increase; molybdenum disulfide is a component of high-performance composite materials, and its market demand will also be improved.

In addition to traditional applications, molybdenum disulfide can be applied to new energy fields, such as solar cells and energy storage batteries. With the continuous development and promotion of new energy technologies, the demand for molybdenum disulfide will continue to increase, providing new impetus for developing the market.

In addition, with the continuous improvement of the production process and the reduction of production costs, the price of molybdenum disulfide will gradually decline, promoting further market demand growth. At the same time, with the continuous enhancement of environmental awareness and the continuous progress of technology, some new production processes and technologies will gradually be applied to the production of molybdenum disulfide, further promoting the development of the molybdenum disulfide market.

According to the report of the market research company, the global molybdenum disulfide market will maintain rapid growth in the next few years, with an annual growth rate of more than 10%. By 2025, the global molybdenum disulfide market is expected to reach more than $1 billion. Among them, China, as a large producer and consumer of molybdenum disulfide, the market size will continue to maintain rapid growth.

Molybdenum disulfide Powder Price :

The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.

If you are looking for the latest Molybdenum disulfide powder price, you can send us your inquiry for a quote.

Molybdenum disulfide Powder Supplier :

Technology Co. Ltd. () is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing

high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, boron powder, 3D printing powder, etc.

If you are looking for high-quality Molybdenum disulfide powder, please feel free to contact us and send an inquiry.

What is Boron carbide

Boron carburide is a high-performance carbon compound, which is composed primarily of boron, carbon, and other elements. The chemical formula for B4C is B4C. It is widely used by industries, the military, aerospace and other fields because of its characteristics, such as high hardness and melting point. The article provides an introduction to boron carbide's physical and chemistry properties, preparation techniques, performance characterization and application fields.

Physical properties

Boron carbide, a non-metallic inorganic material, has a mass density of 2.52g/cm3. It has a cubic lattice structure, a dense black crystal and a 0.243nm lattice constant. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. Its thermal conductivity (97W/m*K) is lower than metals, silicon and ceramics but higher than glass and other materials.

Chemical properties

Boron carbide exhibits chemical stability, and it is not reactive to acids or alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in corrosive and high-temperature environments.

Preparation method

Preparation methods for boron carbide The main methods are the carbon thermal decomposition method, the arc melting technique, and the chemical vapour deposit method.

Methode de réduction du carbothermal

Carbon thermal reduction (CTR) is widely used to prepare boron carbide . This method generates carbon dioxide and boron carburide by melting boric black and carbon. The reaction formula is B2O3+3C + B4C+CO. The reaction temperature ranges from 1500 to 1700°C. The method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.

Arc melting method

In the arc melting process, graphite electrodes are heated and melted in an arc with boric acid to create boron carbide. The reaction formula is B2O3+3C + B4C. The reaction temperature ranges between 18002000 degrees. This method yields boron-carbide with fine particles and high purity, but is costly and complex.

Chemical vapour deposition method

Chemical vapour deposition uses the reaction of gaseous carbon black and borane at high temperature to create boron carburide. The reaction formula is B2H6+6C + B4C+6H2. The reaction temperature ranges between 1000-1200°C. The boron-carbide prepared using this method is high in purity, with superfine particles. However, the process is complicated and expensive.

Performance Characterization

The performance characterisation of boron carbide The term primarily includes chemical, physical and mechanical characteristics.

Physical property

Density, conductivity, thermal resistance, etc. are the main physical properties of Boron carbide. The density is 2.52g/cm3, conductivity 10-6S/m, and thermal conductivity 97W/m*K.

Chemical property

Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with O2, H2O and other substances. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in high temperature and corrosive environment.

Mechanical property

Boron carbide's high hardness, melting temperature, and heat transfer make it a popular material in many industries. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.

RBOSCHCO

RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email to Sales1@rboschco.com, if you're looking for Boron Carbide.

Newsm3lomma is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newsm3lomma.